Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

    Contact us

    MrMrsMsDr



    Collection and Use of Personal Information. *

    Publications

    [Peer-Reviewed Publications] Bioengineering (Basel) – RCKD: Response-Based Cross-Task Knowledge Distillation for Pathological Image Analysis.

    November 7, 2023

    Bioengineering (Basel), 2023

    10(11), 1279; doi.org/10.3390/bioengineering10111279
    Published: 2 November 2023

    Authors: Hyunil Kim,Tae-Yeong Kwak, Hyeyoon Chang, Sun Woo Kim and Injung Kim

    Abstract
    Abstract
    We propose a novel transfer learning framework for pathological image analysis, the Response-based Cross-task Knowledge Distillation (RCKD), which improves the performance of the model by pretraining it on a large unlabeled dataset guided by a high-performance teacher model. RCKD first pretrains a student model to predict the nuclei segmentation results of the teacher model for unlabeled pathological images, and then fine-tunes the pretrained model for the downstream tasks, such as organ cancer sub-type classification and cancer region segmentation, using relatively small target datasets. Unlike conventional knowledge distillation, RCKD does not require that the target tasks of the teacher and student models be the same. Moreover, unlike conventional transfer learning, RCKD can transfer knowledge between models with different architectures. In addition, we propose a lightweight architecture, the Convolutional neural network with Spatial Attention by Transformers (CSAT), for processing high-resolution pathological images with limited memory and computation. CSAT exhibited a top-1 accuracy of 78.6% on ImageNet with only 3M parameters and 1.08 G multiply-accumulate (MAC) operations. When pretrained by RCKD, CSAT exhibited average classification and segmentation accuracies of 94.2% and 0.673 mIoU on six pathological image datasets, which is 4% and 0.043 mIoU higher than EfficientNet-B0, and 7.4% and 0.006 mIoU higher than ConvNextV2-Atto pretrained on ImageNet, respectively.
    Keywords: deep learning; nuclei segmentation; knowledge distillation; contrastive learning; self supervised learning